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YodaNN: An Architecture for Ultralow Power
Binary-Weight CNN Acceleration
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Abstract—Convolutional neural networks (CNNs) have
revolutionized the world of computer vision over the last few
years, pushing image classification beyond human accuracy. The
computational effort of today’s CNNs requires power-hungry
parallel processors or GP-GPUs. Recent developments in CNN
accelerators for system-on-chip integration have reduced energy
consumption significantly. Unfortunately, even these highly opti-
mized devices are above the power envelope imposed by mobile
and deeply embedded applications and face hard limitations
caused by CNN weight I/O and storage. This prevents the
adoption of CNNs in future ultralow power Internet of Things
end-nodes for near-sensor analytics. Recent algorithmic and the-
oretical advancements enable competitive classification accuracy
even when limiting CNNs to binary (+1/−1) weights during train-
ing. These new findings bring major optimization opportunities
in the arithmetic core by removing the need for expensive mul-
tiplications, as well as reducing I/O bandwidth and storage. In
this paper, we present an accelerator optimized for binary-weight
CNNs that achieves 1.5 TOp/s at 1.2 V on a core area of only
1.33 million gate equivalent (MGE) or 1.9 mm2 and with a power
dissipation of 895 µW in UMC 65-nm technology at 0.6 V. Our
accelerator significantly outperforms the state-of-the-art in terms
of energy and area efficiency achieving 61.2 TOp/s/W@0.6 V and
1.1 TOp/s/MGE@1.2 V, respectively.

Index Terms—ASIC, binary weights, convolutional neural
networks (CNNs), hardware accelerator, Internet of Things (IoT).

I. INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have been
achieving outstanding results in several complex tasks

such as image recognition [2]–[4], face detection [5], speech
recognition [6], text understanding [7], [8], and artificial intel-
ligence in games [9], [10]. Although optimized software
implementations have been largely deployed on mainstream
systems [11], CPUs [12], and GPUs [13] to deal with several
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state of the art CNNs, these platforms are obviously not able
to fulfill the power constraints imposed by mobile and Internet
of Things (IoT) end-node devices. On the other hand, sourcing
out all CNN computation from IoT end-nodes to data servers
is extremely challenging and power consuming, due to the
large communication bandwidth required to transmit the data
streams. This prompts for the need of specialized architec-
tures to achieve higher performance at lower power within the
end-nodes of the IoT.

A few research groups exploited the customization paradigm
by designing highly specialized hardware to enable CNN com-
putation in the domain of embedded applications. Several
approaches leverage field-programmable gate arrays (FPGAs)
to maintain post-fabrication programmability, while providing
significant boost in terms of performance and energy effi-
ciency [14]. However, FPGAs are still two orders of magnitude
less energy-efficient than ASICs [15]. Moreover, CNNs are
based on a very reduced set of computational kernels (i.e.,
convolution, activation, and pooling), but they can be used
to cover several application domains (e.g., audio, video, and
biosignals) by simply changing weights and network topol-
ogy, relaxing the issues with nonrecurring engineering which
are typical in ASIC design.

Among CNN ASIC implementations, the precision of arith-
metic operands plays a crucial role in energy efficiency.
Several reduced-precision implementations have been pro-
posed recently, relying on 16-bit, 12-bit, or 10-bit of accu-
racy for both operands and weights [15]–[19], exploiting the
intrinsic resiliency of CNNs to quantization and approxi-
mation [20], [21]. In this paper, we take a significant step
forward in energy efficiency by exploiting recent research on
binary-weight CNNs [22], [23]. BinaryConnect is a method
which trains a deep neural network with binary weights dur-
ing the forward and backward propagation, while retaining the
precision of the stored weights for gradient descent optimiza-
tion. This approach has the potential to bring great benefits
to CNN hardware implementation by enabling the replace-
ment of multipliers with much simpler complement operations
and multiplexers, and by drastically reducing weight stor-
age requirements. Interestingly, binary-weight networks lead
to only small accuracy losses on several well-known CNN
benchmarks [24], [25].

In this paper, we introduce the first optimized hardware
design implementing a flexible, energy-efficient and perfor-
mance scalable convolutional accelerator supporting binary-
weight CNNs. We demonstrate that this approach improves
the energy efficiency of the digital core of the accelerator by
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5.1×, and the throughput by 1.3×, with respect to a base-
line architecture based on 12-bit MAC units operating at a
nominal supply voltage of 1.2 V. To extend the performance
scalability of the device, we implement a latch-based stan-
dard cell memory (SCM) architecture for on-chip data storage.
Although SCMs are more expensive than SRAMs in terms of
area, they provide better voltage scalability and energy effi-
ciency [26], extending the operating range of the device in the
low-voltage region. This further improves the energy efficiency
of the engine by 6× at 0.6 V, with respect to the nominal oper-
ating voltage of 1.2 V, and leads to an improvement in energy
efficiency by 11.6× with respect to a fixed-point implementa-
tion with SRAMs at its best energy point of 0.8 V. To improve
the flexibility of the convolutional engine we implement sup-
port for several kernel sizes (1 × 1 – 7 × 7), and support for
per-channel scaling and biasing, making it suitable for imple-
menting a large variety of CNNs. The proposed accelerator
surpasses state-of-the-art CNN accelerators by 2.7× in peak
performance with 1.5 TOp/s [27], by 10× in peak area effi-
ciency with 1.1 TOp/s/MGE [28] and by 32× peak energy
efficiency with 61.2 TOp/s/W [28].

II. RELATED WORK

CNNs are reaching record-breaking accuracy in image
recognition on small data sets like MNIST, SVHN, and
CIFAR-10 with accuracy rates of 99.79%, 98.31%, and
96.53% [29]–[31]. Recent CNN architectures also perform
very well for large and complex data sets such as ImageNet:
GoogLeNet reached 93.33% and ResNet achieved a higher
recognition rate (96.43%) than humans (94.9%). As the trend
goes to deeper CNNs (e.g., ResNet uses from 18 up to
1001 layers, VGG OxfordNet uses 19 layers [32]), both
memory and computational complexity increases. Although
CNN-based classification is not problematic when running
on mainstream processors or large GPU clusters with kW-
level power budgets, IoT edge-node applications have much
tighter, mW-level power budgets. This “CNN power wall”
led to the development of many approaches to improve CNN
energy efficiency, both at the algorithmic and at the hardware
level.

A. Algorithmic Approaches

Several approaches reduce the arithmetic complexity of
CNNs by using fixed-point operations and minimizing the
word widths. Software frameworks, such as Ristretto focus
on CNN quantization after training. For LeNet and Cifar-10
the additional error introduced by this quantization is less than
0.3% and 2%, respectively, even when the word width has been
constrained to 4-bit [21]. It was shown that state-of-the-art
results can be achieved quantizing the weights and activations
of each layer separately [33], while lowering precision down
to 2-bit (−1, 0, +1) and increasing the network size [20].
Moons et al. [34] analyzed the accuracy-energy tradeoff by
exploiting quantization and precision scaling. Considering the
sparsity in deeper layers because of the ReLU activation func-
tion, they detect multiplications with zeros and skip them,
reducing run time and saving energy. They reduce power by

30× (compared to 16-bit fixed-point) without accuracy loss,
or 225× with a 1% increase in error by quantizing layers
independently.

BinaryConnect [25] proposes to binarize (−1, +1) the
weights wfp. During training, the weights are stored and
updated in full precision, but binarized for forward and
backward propagation. The following formula shows the deter-
ministic and stochastic binarization function, where a “hard
sigmoid” function σ is used to determine the probability
distribution:

wb,det =
{

1, if wfp < 0

−1, if wfp > 0
, wb,sto =

{
1, p = σ(wfp)

−1, p = 1 − σ

σ(x) = clip

(
x + 1

2
, 0, 1

)
= max

(
0, min

(
1,

x + 1

2

))
.

In a follow-up work [25], the same authors propose to quan-
tize the inputs of the layers in the backward propagation to
3 or 4 bits, and to replace the multiplications with shift-add
operations. The resulting CNN outperforms in terms of accu-
racy even the full-precision network. This can be attributed to
the regularization effect caused by restricting the number of
possible values of the weights.

Following this trend, Courbariaux and Bengio [24] and
Rastegari et al. [23] considered also the binarization of the
layer inputs, such that the proposed algorithms can be imple-
mented using only XNOR operations. In these works, two
approaches are presented.

1) Binary-weight-networks BWN which scale the out-
put channels by the mean of the real-valued weights.
With this approach they reach similar accuracy in the
ImageNet data set when using AlexNet [2].

2) XNOR-Networks where they also binarize the input
images. This approach achieves an accuracy of 69.2%
in the top-five measure, compared to the 80.2% of the
setup 1). Based on this paper, Wu [35] improved the
accuracy up to 81% using log-loss with soft-max pool-
ing, and he was able to outperform even the accuracy
results of AlexNet. However, the XNOR-based approach
is not mature enough since it has only been proven on
a few networks by a small research community.

Similarly to the scaling by the batch normalization,
Merolla et al. [36] evaluated different weight projection
functions where the accuracy could even be improved from
89% to 92% on Cifar-10 when binarizing weights and scal-
ing every output channel by the maximum-absolute value
of all contained filters. In this paper, we focus on imple-
menting a CNN inference accelerator for neural networks
supporting per-channel scaling and biasing, and implement-
ing binary weights and fixed-point activation. Exploiting this
approach, the reduction of complexity is promising in terms
of energy and speed, while near state-of-the-art classification
accuracy can be achieved with appropriately trained binary
networks [22], [23].

B. CNN Acceleration Hardware

There are several approaches to perform CNN computations
on GPUs, which are able to reach a throughput up to 6 TOp/s



50 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 1, JANUARY 2018

with a power consumption of 250 W [13], [37]. On the other
hand, there is a clear demand for low-power CNN acceleration.
For example, Google exploits in its data-centers a custom-
made neural network accelerator called Tensor Processing
Unit tailored to their TensorFlow framework. Google claims
that they were able to reduce power by roughly 10× with
respect to GP-GPUs [38]. Specialized functional units are also
beneficial for low-power programmable accelerators which
recently entered the market. A known example is the Movidius
Myriad 2 which computes 100 GFLOPS and needs just
500 mW@600 MHz [39]. However, these low-power archi-
tectures are still significantly above the energy budget of IoT
end-nodes. Therefore, several dedicated hardware architectures
have been proposed to improve the energy efficiency while
preserving performance, at the cost of flexibility.

Several CNN systems were presented implementing acti-
vation layer (mainly ReLU) and pooling (i.e., max pool-
ing) [27], [28], [40]. In this paper, we focus on the convolution
layer as this contributes most to the computational complex-
ity [13]. Since convolutions typically rely on recent data for
the majority of computations, sliding window schemes are typ-
ically used [17], [18], [40], [41] (e.g., in case of 7×7 kernels,
6×7 pixels are reused in the subsequent step). In this paper, we
go even further and cache the values, such that we can reuse
them when we switch from one to the next tile. In this way,
only one pixel per cycle has to be loaded from the off-chip
storage.

As the filter kernel sizes change from problem to problem,
several approaches were proposed to support more than one
fixed kernel size. Zero-padding is one possibility: in Neuflow
the filter kernel was fixed to 9 × 9 and it was filled with
zeros for smaller filters [42]. However, this means that for
smaller filters unnecessary data has to be loaded, and that the
unused hardware cannot be switched off. Another approach
was presented by Chen et al. [41], who have proposed an
accelerator containing an array of 14 × 12 configurable pro-
cessing elements connected through a network-on-chip. The
PEs can be adjusted for several filter sizes. For small filter
sizes, they can be used to calculate several output channels in
parallel or they can be switched-off. Even though this approach
brings flexibility, all data packets have to be labeled, such
that the data can be reassembled in a later step. Hence, this
system requires a lot of additional multiplexers and control
logic, forming a bottleneck for energy efficiency. To improve
the flexibility of YodaNN1 we propose an architecture that
implements several kernel sizes (1 × 1, 2 × 2, . . . , 7 × 7). Our
hardware exploits a native hardware implementation for 7×7,
5 × 5, and 3 × 3 filters, in conjunction with zero-padding to
implement the other kernel sizes.

Another approach minimizes the on-chip computational
complexity exploiting the fact that due to the ReLU activa-
tion layer, zero-values appear quite often in CNNs. In this
way some of the multiplications can be bypassed by means
of zero-skipping [41]. This approach is also exploited by
Reagen et al. [43] and Albericio et al. [44]. Another approach

1YodaNN named after the Jedi master known from StarWars—“small in
size but wise and powerful” [1].

exploits that the weights’ distribution shows a clear maximum
around zero. Jaehyeong et al. [40] proposed in their work a
small 16-bit multiplier, which triggers a stall and calculation
of the higher-order bits only when an overflow is detected,
which gives an improvement of 56% in energy efficiency. The
complexity can be reduced further by implementing quan-
tization scaling as described in Section II-A. Even though
most approaches work with fixed-point operations, the num-
ber of quantization bits is still kept at 24-bit [28], [40] or
16-bit [17], [18], [27], [42], [45].

To improve throughput and energy efficiency, Han et al. [46]
presented compressed deep neural networks, where the num-
ber of different weights are limited, and instead of saving or
transmitting full precision weights, the related indices are used.
They presented a neural networks accelerator, called efficient
inference engine (EIE), exploiting network pruning and weight
sharing (deep compression). For a network with a sparsity as
high as 97%, EIE reaches an energy efficiency of 5 TOp/s/W,
and a throughput of 100 GOp/s, which is equal to a throughput
of 3 TOp/W for the equivalent noncompressed network [47].
Even though this outperforms the previous state-of-the-art by
5×, we can still demonstrate a 12× more efficient design
exploiting binary weights. Jaehyeong et al. [40] used PCA
to reduce the dimension of the kernels. Indeed, they showed
that there is a strong correlation among the kernels, which
can be exploited to reduce their dimensionality without major
influence on accuracy. This actually reduces the energy needed
to load the chip with the filters and reduces the area to save
the weights, since only a small number of bases and a reduced
number of weight components need to be transmitted. On the
other hand, it also increases the core power consumption, since
the weights have to be reconstructed on-the-fly. With binary
weights, we were able to reduce the total kernel data by 12×,
which is similar to the 12.5× reported in [40]. On the other
hand, YodaNN outperforms their architecture by 43× in terms
of energy efficiency thanks to its simpler internal architecture
that do not require on-the-fly reconstruction. Some CNN accel-
erators have been presented exploiting analog computation: in
one approach [48], part of the computation was performed
partially on the camera sensor chip before transmitting the
data to the digital processing chip. Another mixed-signal
approach [50] looked into embedding part of the CNN compu-
tation in a memristive crossbar. Efficiencies of 960 GOp/s [48]
and 380 GOp/s/W [49] were achieved. YodaNN outper-
forms these approaches by 64× and 161×, respectively,
thanks to aggressive discretization and low-voltage digital
logic.

The next step consists in quantizing the weights to a binary
value. However, this approach has only been implemented on
Nvidia GTX750 GPU leading to a 7× run-time reduction [24].
In this paper, we present the first hardware accelerator opti-
mized for binary weights CNN, fully exploiting the benefits of
the reduction in computational complexity boosting area and
energy efficiency. Furthermore, the proposed design scales to
deep near-threshold thanks to SCM and an optimized imple-
mentation flow, outperforming the state of the art by 2.7×
in performance, 10× in area efficiency, and 32× in energy
efficiency.
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Fig. 1. Overview of execution time in a convolution neural network for
scene labeling executed on CPU and GPU [13].

Fig. 2. 32×32 CNN layer, with input channels in and output channels ok .

III. ARCHITECTURE

A CNN consists of several layers, usually they are convolu-
tion, activation, pooling or batch normalization layers. In this
paper, we focus on the convolution layers as they make up
for the largest share of the total computation time. As can be
seen in [13, Fig. 1], convolution layers make up for the largest
fraction of compute time in CPU and GPU implementations.
This is why we focus on convolution layers in this paper. A
general convolution layer is drawn in Fig. 2 and it is described
by (1), shown at the bottom of this page. A layer consists of nin
input channels, nout output channels, and nin ·nout kernels with
hk ×bk weights; we denote the matrix of filter weights as wk,n.
For each output channel k every input channel n is convolved
with a different kernel wk,n, resulting in the terms õk,n, which
are accumulated to the final output channel ok. We propose a
hardware architecture able to calculate nch × nch channels in
parallel. If the number of input channels nin is greater than nch,
the system has to process the network �nin/nch� times and the
results are accumulated off-chip. This adds only �nin/nch�−1
operations per pixel. In the following, we fix, for ease of illus-
tration, the number of output channels to nch = 32 and the
filter kernel size to hk = bk = 7. The system is composed of
the following units (an overview can be seen in Fig. 3).

Fig. 3. General overview of the system with the image memory and image
bank in blue, filter bank and SoP units in green, channel summer in red and
the interleaved per-channel scaling, biasing and streaming-out units in yellow.

1) The filter bank is a shift register which contains the
binary filter weights wk,n for the output channels k ∈
N<32 and input channels n ∈ N<32 (nin ·nout ·h2

k ·1 bit =
6.4 kB) and supports column-wise left circular shift per
kernel.

2) The image memory saves an image stripe of bk = 7
width and 1024 height (10.8 kB), which can be used
to cache 1024/nin = 1024/32 = 32 rows per input
channel.

3) The image bank (ImgBank) caches a spatial window of
hk × bk = 7 × 7 per input channel n (2.4 kB), which are
applied to the sum-of-product (SoP) units. This unit is
used to reduce memory accesses, as the hk − 1 = 6 last
rows can be reused when we proceed in a column-wise
order through the input images. Only the lowest row has
to be loaded from the image memory and the upper rows
are shifted one row up.

4) SoP Units (32, 1 Per Output Channel): For every out-
put channel k, the SoP unit k calculates the sum terms
õk,n, where in each cycle the contribution of a new input
channel n is calculated.

5) Channel Summer (ChSum) Units (32, 1 Per Output
Channel): The ChSum k accumulates the sum terms õk,n

for all input channels n.
6) 1 Scale-Bias Unit: After all the contributions of the input

channels are summed together by the channel summers,
this unit starts to scale and bias the output channels in
an interleaved manner and streams them out.

7) I/O Interface: Manages the 12-bit input stream (input
channels) and the two 12-bit output streams (output
channels) with a protocol based on a blocking ready-
valid handshaking.

A. Dataflow

The pseudo-code in Algorithm 1 gives an overview of the
main steps required for the processing of convolution layers,

ok = Ck +
∑
n∈I

in ∗ wk,n︸ ︷︷ ︸
˜ok,n

, ok(x, y) = Ck +
∑
n∈I

⎛
⎝bk−1∑

a=0

hk−1∑
b=0

in(x + a, y + b) · wk,n(a, b)

⎞
⎠

︸ ︷︷ ︸
õk,n(x,y)

(1)
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Algorithm 1 Dataflow Pseudo-Code
Require: weights wk,n, input feature map ik(x, y)
Ensure: on = ∑

k ik ∗ wk,n

1: for all yblock ∈ {1, .., �him/hmax�} do
2: for all cout,block ∈ {1, .., �nout/nch�} do
3: for all cin,block ∈ {1, .., �nin/nch�} do
4: – YodaNN chip block
5: Load Filters wk,n

6: Load m colums, where

m =
{

hk − 1, if not zero-padded

� hk−1
2 �, if zero-padded

7: Load m pixels of the (m + 1)th column.
8:

9: – Parallel block 1
10: for all x do
11: for all y do
12: õ(cout: = ·, x, y): = 0
13: for all cin do
14:

15: – Single cycle block
16: for all cout do
17: for all (a,b) ∈ {−� hk

2 � ≤ a, b ≤ � hk
2 �}

do
18: õcout(x, y) = õcout(x, y)+

icin(x+a, y+b) · wcout,cin(a, b)

19: end for
20: end for
21: end for
22: end for
23: end for
24: – Parallel block 2
25: for all x do
26: wait until õ0(x, 0) is computed
27: for all y do
28: for all cout do
29: – Single cycle block
30: ocout(x, y) = αcout õcout(x, y) + βcout

31: output ocout(x, y)
32: end for
33: end for
34: end for
35: end for
36: – Sum the input channel blocks:
37: on,final = ∑

cin,blocks
on,·

38: end for
39: end for

while Fig. 4 shows a timing diagram of the parallel work-
ing units. The input and output channels need to be split into
blocks smaller than 32×32, while the image is split into slices
of 1024/cin height (lines 1–3). These blocks are indicated as
YodaNN chip block. Depending on whether the border is zero-
padded or not, �(hk − 1)/2� or hk − 1 columns need to be
preloaded (just in case of 1 × 1 filters no pixels need to be
preloaded) (line 6). The same number of pixels are preloaded
from one subsequent column, such that a full square of h2

k

pixels for each input channel is available in the image bank
(line 7). After this preloading step, the SoPs start to calcu-
late the partial sums of all 32 output channels while the input
channel is changed every cycle (lines 15–20). When the final
input channel is reached, the channel summers keep the final
sum for all 32 output channels of the current row and col-
umn, which are scaled and biased by the scale-bias unit and
the final results are streamed out in an interleaved manner
(lines 27–33). In case of nout = nin (e.g., 32 × 32) the same
number of cycles are needed to stream out the pixels for all
output channels as cycles are needed to sum all input channels
for the next row, which means that all computational units of
the chip are fully utilized. Each row is processed sequentially,
then the system switches to the next column, where again
the first pixels of the column are preloaded. The filters are
circularly right shifted to be aligned to the correct columns.
Then, the next column of all output channels are calculated.
This procedure is repeated until the whole image and blocks
of input and output channels have been processed. Finally,
the partial sums for each output channels need to be summed
together for every block of input channels (line 37).

We use the same sliding window approach developed in [13]
and Fig. 5 shows the implemented sliding window approach.
To avoid shifting all images in the image memory to the left
for the next column, the right most pixels are inserted at the
position of the obsolete pixel, and the weights are shifted
instead. To illustrate this, (2) shows the partial convolution
for one pixel while the pixels are aligned to the actual column
order and (3) shows it when the next column is processed
and the weights need to be aligned. To indicate the partial
sum, the Frobenius inner product formalism is used, where
〈A, B〉F = ∑

i,j aijbij

õ(2, 2) =
〈⎡
⎣x11 x12 x13

x21 x22 x23
x31 x32 x33

⎤
⎦,

⎡
⎣w11 w12 w13

w21 w22 w23
w31 w32 w33

⎤
⎦

〉
F

(2)

õ(3, 2) =
〈⎡
⎣x14 x12 x13

x24 x22 x23
x34 x32 x33

⎤
⎦,

⎡
⎣w13 w11 w12

w23 w21 w22
w33 w31 w32

⎤
⎦

〉
F

. (3)

Equation 3 shows the operands as they are applied to the
SoP units. The fourth column which should be the most-right
column is in the first column and also the other columns are
shifted to the right, thus the weights also needs to be shifted
to the right to obtain the correct result. The permutation in
algebraic form is formulated

õ(3, 2) =
〈⎡
⎣x14 x12 x13

x24 x22 x23
x34 x32 x33

⎤
⎦,

⎡
⎣w11 w12 w13

w21 w22 w23
w31 w32 w33

⎤
⎦ · P

〉
F

(4)

where P =
⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ is the permutation matrix.

B. BinaryConnect Approach

In this paper we present a CNN accelerator based on
BinaryConnect [22]. With respect to an equivalent 12-bit ver-
sion, the first major change in architecture are the weights



ANDRI et al.: YodaNN: ARCHITECTURE FOR ULTRALOW POWER BINARY-WEIGHT CNN ACCELERATION 53

Fig. 4. Timing diagram of the operating scheme: input stream, SoP k’s operations, and output stream after accumulation.

Fig. 5. Sliding window approach of the image memory.

which are reduced to a binary value wk,n ∈ {−1, 1} and
remapped by the following equation:

f : {−1, 1} → {0, 1}, y →
{

0 if z = −1

1 if z = 1.
(5)

The size of the filter bank decreases thus from n2
ch · h2

k · 12 =
37 632 bits to n2

ch · h2
k · 1 = 3136 bits in case of the 12-bit

MAC architecture with 8 × 8 channels and 7 × 7 filters that
we consider as baseline. The 12 × 12-bit multipliers can be
substituted by two’s-complement operations and multiplexers,
which reduce the “multiplier” and the adder tree size, as the
products have a width of 12 bits instead of 24. The SoP is fed
by a 12-bit and 7×7 pixel sized image window and 7×7 binary
weights. Fig. 6 shows the impact on area while moving from
12-bit MACs to the binary connect architectures. Considering
that with the 12-bit MAC implementation 40% of the total chip
area is used for the filter bank and another 40% are needed for
the 12 × 12-bit multipliers and the accumulating adder trees,
this leads to a significant reduction in area cost and complex-
ity. In fact the area of the conventional SoP unit could be
reduced by 5.3× and the filter bank by 14.9× when moving
from the Q2.9 to the binary version. The impact on the fil-
ter bank is straightforward as 12 times less bits need to be
saved compared to the Q2.9, but also the SoP shrinks, as the
12×12-bit multipliers are replaced with 2s complement opera-
tion units and multiplexers and the adder tree needs to support
a smaller dynamic range, thanks to the smaller products, since
the critical path is reduced as well. It is possible to reduce volt-
age while still keeping the same operating frequency and thus
improving the energy efficiency even further.

Fig. 6. Area breakdown for fixed-point and several binary architectures.

C. Latch-Based SCM

An effective approach to optimize energy efficiency is to
adapt the supply voltage of the architecture according to the
performance requirements of the application. However, the
potential of this approach is limited by the presence of SRAMs
for implementation of image memory, which bounds the volt-
age scalability to 0.8 V (in 65-nm CMOS technology). To
overcome this limitation, we replace the SRAM-based image
memory with a latch-based SCMs taking advantage of the area
savings achieved through adoption of binary SoPs.

Indeed, although SCMs are more expensive in terms of
area (Fig. 6), they are able to operate in the whole operat-
ing range of the technology (0.6 – 1.2 V) and they also feature
significantly smaller read/write energy [26] at the same volt-
age. To reduce the area overhead of the SCMs and improve
routability we propose a multibanked implementation, where
the image memory consists of a latch array organized in 6×8
blocks of 128 rows of 12-bit values, as described in Fig. 7.
A predecoding logic, driven by the controller of the convolu-
tional accelerator addresses the proper bank of the array every
cycle, generating the local write and read enable signals, the
related address fields, and propagating the input pixels to the
banks and the current pixels to the SoP unit. During a typical
CNN execution, every cycle, six SCMs banks are read, and
one is written, according to the image memory access pattern
described in Fig. 5.

The SCMs are designed with a hierarchical clock gating and
address/data silencing mechanisms as shown in Fig. 8, so that
when a bank is not accessed the whole latch array consumes no
dynamic power. Every SCM block consists of a 12-bit × 128
rows array of latches, a data-in write path, and a read-out
path. To meet the requirements of the application, the SCM
banks are implemented with a two-ported, single-cycle latency
architecture with input data and read address sampling. The
write path includes data-in sampling registers, and a two-level
clock gating scheme for minimizing the dynamic power of the
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Fig. 7. Image memory architecture.

Fig. 8. Block diagram of one SCM bank.

clock path to the storage latches. The array write enable port
drives the global clock gating cell, while the row clock gat-
ing cells are driven by the write address one-hot decoder. The
readout path is implemented with a read address register with
clock gating driven by a read enable signal, and a static mul-
tiplexer tree, which provides robust and low power operation,
and enables dense and low congestion layout.

Thanks to this optimized architecture based on SCMs, only
up to 7 out of 48 banks of SCM banks consume dynamic
power in every cycle, reducing power consumption of the
memory by 3.25× at 1.2 V with respect to a solution based
on SRAMs [15], while extending the functional range of the
whole convolutional engine down to 0.6 V which is the voltage
limit of the standard cells in UMC 65-nm technology chosen
for implementation [51].

D. Considering I/O Power in Energy Efficiency

I/O power is a primary concern of convolutional acceler-
ators, consuming even more than 30% of the overall chip
power [50]. As we decrease the computational complexity by
the binary approach, the I/O power gets even more critical.
Fortunately, if the number of output channels is increased,

Fig. 9. Adder tree in the SoP unit: different colors are showing the data
paths for 3 × 3, 5 × 5, and 7 × 7 kernels are indicated. The operands of the
unused adders are silenced, but not indicated in the figure.

more operations can be executed on the same data, which
reduces the needed bandwidth and pad power consumption.
The other advantage with having more SoP units on-chip is
throughput which is formulated in the following equation:

� = 2 ·
(

n2
filt · nch

)
· f . (6)

With this in mind, we increased the number of input and output
channels from 8 × 8 to 16 × 16 and 32 × 32 which provides
an ideal speed-up of throughput by 2× and 4×, respectively.

E. Support for Different Filter Sizes, Zero-Padding, Scaling
and Biasing

Adapting filter size to the problem provides an effective
way to improve the flexibility and energy efficiency of the
accelerator when executing CNNs with different requirements.
Although the simplest approach is to zero-pad the filters, this
is not feasible in the presented binary connect architecture, as
the value 0 is mapped to −1. A more energy-efficient approach
tries to reuse parts of the architecture. We present an architec-
ture where we reuse the binary multipliers for two 3 × 3, two
5 × 5, or one 7 × 7 filters. In this paper we limit the number
of output channels per SoP unit to two as we are limited in
output bandwidth. With respect to our baseline architecture,
supporting only 7 × 7 filters, the number of binary operators
and the weights per filter is increased from 49 to 50, such that
two 5 × 5 or one 7 × 7 filter fits into one SoP unit. In case
a filter size of 3 × 3 or 5 × 5 is used, the image from the
image bank is mapped to the first 25 input image pixels, and
the latter 25 and are finally accumulated in the adjusted adder
tree, which is drawn in Fig. 9. With this scheme, nch × 2nch
channels for 3 × 3 and 5 × 5 filters can be calculated, which
improves the maximum bandwidth and energy efficiency for
these two cases. The unused 2s complement-and-multiplex
operands (binary multipliers) and the related part of the adder
tree are silenced and clock-gated to reduce switching, therefore
keeping the power dissipation as low as possible.
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To support also different kernel sizes, we provide the func-
tionality to zero-pad the unused columns from the image
memory and the rows from the image bank instead of zeroing
the weights which does not make sense with binary weights.
This allows us to support kernels of size 1 × 1, 2 × 2, 4 × 4,
and 6 × 6 as well. The zero-padding is also used to add zeros
to image borders: e.g., for a 7×7 convolution the first three
columns and first three rows of the fourth column is preloaded.
The three columns right to the initial pixel and the three rows
on top of the pixel are zeroed the same way as described
before and thus have not to be loaded onto the chip.

Finally, the system supports channel scaling and biasing
which are common operations (e.g., in batch normalization
layer) in neural networks which can be calculated efficiently.
As described in the previous section up to two output chan-
nels are calculated in parallel in every SoP unit, therefore the
SoP saves also two scaling and two biasing values for these
different output channels. As the feature maps are kept in max-
imum precision on-chip, the channel summers’ output Q7.9
fixed-point values, which are than multiplied with the Q2.9
formatted scaling factor and added to the Q2.9 bias and finally
the Q10.18 output is resized with saturation and truncation to
the initial Q2.9 format. With the interleaved data streaming,
these operations are just needed once per cycle or twice when
the number of output channels are doubled (e.g., k = 3 × 3).

IV. RESULTS

A. Computational Complexity and Energy
Efficiency Measure

Research in the field of deep learning is done on a large vari-
ety of systems, such that platform-independent performance
metrics are needed. For computational complexity analysis the
total number of multiplications and additions has been used in
other publications [13], [16], [42], [52]. For a CNN layer with
nin input channels and nout output channels, a filter kernel size
of hk × wk, and an input size of him × wim, the computational
complexity to process one frame can be calculated as follows:

#Op = 2noutninhkwk(hin − hk + 1)(win − hk + 1). (7)

The factor of 2 considers additions and multiplications as
separate arithmetic operations (Op), while the rest of the equa-
tion calculates the number of multiply accumulate operations
MACs. The two latter factors (hin −hk +1) and (win −hk +1)

are the height and width of the output channels including the
reduction at the border in case no zero-padding was applied.
Memory accesses are not counted as additional operations.
The formula does not take into account the amount of opera-
tions executed when applying zero-padding. In the following
evaluation, we will use the following metrics.

1) Throughput � = (#Op based on (7))/t [GOp/s].
2) Peak Throughput: Theoretically reachable throughput.

This does not take into account idling, cache misses,
etc.

3) Energy efficiency HE = �/P [TOp/s/W].
4) Area efficiency HA = �/A [GOp/s/MGE].
Furthermore, we will introduce some efficiency metrics to

allow for realistic performance estimates, as CNN layers have

varying numbers of input and output channels and image sizes
vary from layer to layer

�real = �peak ·
∏

i

ηi. (8)

1) Tiling: The number of rows are limited by the image
window memory, which accommodates hmax · nch,in words of
wk ·12 bit, storing a maximum of hmax rows per input channel.
In case the full image height does not fit into the memory, it
can be split into several image tiles which are then processed
consecutively. The penalty are the (hk − 1) rows by which
the tiles need to vertically overlap and thus are loaded twice.
The impact on throughput can be determined by the tiling
efficiency

ηtile = him

him +
(⌈

him
hmax

⌉
− 1

)
(hk − 1)

. (9)

2) (Input) Channel Idling: The number of output and input
channels usually does not correspond to the number of out-
put and input channels processed in parallel by this core.
The output and input channels are partitioned into blocks of
nch ×nch. Then the outputs of these blocks have to be summed
up pixel-wise outside the accelerator.

In the first few layers, the number of input channels nin can
be smaller than the number of output channels nout. In this
case, the output bandwidth is limiting the input bandwidth by
a factor of ηchIdle

ηchIdle = nin

nout
. (10)

Note that this factor only impacts throughput, not energy effi-
ciency. Using less than the maximum available number of
input channels only results in more cycles being spent idling,
during which only a negligible amount of energy (mainly
leakage) is dissipated.

3) Border Considerations: To calculate one pixel of an out-
put channel, at least h2

k pixels of each input channel are needed.
This leads to a reduction of (1/2)(hk −1) pixels on each side.
While in some cases this is acceptable, many and particularly
deep CNNs perform zero-padding to keep a constant image
size, adding an all-zero halo around the image. In case of
zero-padding, [(hk − 1)/2] columns need to be preloaded, this
introduces latency, but does not increase idleness as the same
number of columns need to be processed after the last column
where in the meantime the first columns of the next image
can be preloaded to the image and therefore ηborder = 1. For
nonzero padded layers, the efficiency is reduced by the factor

ηborder,non-zero-padded = hk − 1

wim
· hk − 1

him
. (11)

B. Experimental Setup

To evaluate the performance and energy metrics of the
proposed architecture and to verify the correctness of the
generated results, we developed a testbench, which gener-
ates the control signals of the chip, reads the filters and the
input images from a raw file, and streams the data to the
chip. The output is monitored and compared to the expected
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Fig. 10. Floorplan of YodaNN with a 9.2 KiB SCM memory computing 32
output channels in parallel.

output feature maps which are read from a file, too. To cal-
culate the expected responses we have implemented a bit-true
quantized spatial convolution layer in Torch which acts as a
golden model. The power results are based on post place &
route results of the design. The design was synthesized with
Synopsys Design Compiler J-2014.09-SP4, while place and
route was performed with Cadence Innovus 15.2. The UMC
65-nm standard cell libraries used for implementation were
characterized using Cadence Liberate 12.14 in the voltage
range 0.6 – 1.2 V, and in the typical process corner at the tem-
perature of 25 ◦C. The power simulations were performed with
Synopsys PrimePower 2012.12, based on value change dump
files extracted from simulations of real-life workloads running
on the post place and route netlist of the design. These simula-
tions were done with the neural network presented in [50] on
the Stanford backgrounds data set [53] (715 images, 320×240
RGB, scene-labeling for various outdoor scenes), where every
pixel is assigned with one of eight classes, i.e., sky, tree, road,
grass, water, building, mountain, and foreground object. The
I/O power was approximated by power measurements on chips
of the same technology [15] and scaled to the actual operating
frequency of YodaNN.

The final floorplan of YodaNN is shown in Fig. 10. The area
is split mainly among the SCM memory with 480 kGE, the
binary weights filter bank with 333 kGE, the SoP units with
215 kGE, the image bank with 123 kGE and the area distribu-
tion is drawn in Fig. 6. The core area is 1.3 MGE (1.9 mm2).
The chip runs at a maximum frequency of 480 MHz@1.2 V
and 27.5 MHz@0.6 V.

C. Fixed-Point Versus YodaNN

In this section, we compare a fixed-point baseline imple-
mentation with a binary version with fixed filter kernel size of
7 × 7 and 8 × 8 channels including an SRAM for input image
storage. The results are summarized in Table I. The reduced
arithmetic complexity and the replacement of the SRAM by
a latch-based memory shortened the critical path delay. Three
pipeline stages between the memory and the channel sum-
mers were used in the fixed-point baseline version could be
reduced to one pipeline stage. The peak throughput could still
be increased from 348 GOp/s to 377 GOp/s at a core volt-
age of 1.2 V and the core power was reduced by 79 % to
39 mW, which leads to a 5.1× better core energy efficiency

TABLE I
FIXED-POINT Q2.9 VERSUS BINARY ARCHITECTURE 8 × 8

TABLE II
DEVICE ENERGY EFFICIENCY FOR DIFFERENT

FILTERS AND ARCHITECTURES

Fig. 11. Comparison of core energy efficiency and throughput for the baseline
architecture (fixed-point Q2.9, SRAM, 8×8 channels, fixed 7×7 filters) with
final YodaNN (binary, SCM, 32×32 channels, supporting several filters).

and 1.3× better core area efficiency. As UMC 65-nm technol-
ogy SRAMs fail below 0.8 V, we can get even better results by
reducing the supply voltage to 0.6 V thanks to our SCM imple-
mentation. Although the peak throughput drops to 15 GOp/s,
the core power consumption is reduced to 260 µW, and core
energy efficiency rises to 59 TOp/s/W, which is an improve-
ment of 11.6× compared to the fixed-point architecture at
0.8 V.

Fig. 11 shows the throughput and energy efficiency of
YodaNN with respect to the baseline architecture for dif-
ferent voltage supplies, while Fig. 12 shows the breakdown
of the core power an the operating frequency of 400 MHz.
Comparing the two 8×8 channels variants (fixed-point and
binary weights), the power consumption was reduced from
185 to 39 mW, where the power could be reduced by 3.5×
in the SCM, 4.8× in the SoP units and 31× in the filter
bank. Although the power consumption of the core increases
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TABLE III
EVALUATION ON SEVERAL WIDELY KNOWN CNNS IN THE HIGH-EFFICIENCY CORNER

by 3.32× when moving from 8 × 8 to 32 × 32 channels, the
throughput increases by 4×, improving energy efficiency by
20%. Moreover, taking advantage of more parallelism, volt-
age and frequency scaling can be exploited to improve energy
efficiency for a target throughput. The support for different ker-
nel sizes significantly improves the flexibility of the YodaNN
architecture, but increases the core area by 11.2%, and the
core power by 38% with respect to a binary design support-
ing 7×7 kernels only. The scale-bias unit occupies another
2.5 kGE area and consumes 0.4 mW at a supply voltage of
1.2 V and a operating frequency of 480 MHz. When I/O power
is considered, increasing the number of channels is more ben-
eficial, since we can increase the throughput while the total
device power does not increase at the same rate. We estimate

a fixed contribution of 328 mW for the I/O power at 400 MHz.
Table II provides an overview of the device energy efficiency
for different filter kernel sizes at 1.2 V core and 1.8 V pad sup-
ply. The device energy efficiency raises from 856 GOps/s/W
in the 8 × 8 architecture to 1611 in the 16 × 16 and to 2756
in the 32 × 32.

D. Real Applications

For a comparison based on real-life CNNs, we have selected
several state-of-the-art networks which exploit binary weights.
This includes the CNNs from the BinaryConnect paper for

2The 11 × 11 kernels are split into two 6 × 6 and two 5 × 5 kernels as
described in Section IV-D.
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Fig. 12. Core power breakdown for fixed-point and several binary
architectures.

Cifar-10 and SVHN [22], and the well-known networks VGG-
13, VGG-19 [32], ResNet-18, ResNet-34 [4], and AlexNet [2],
which were successfully implemented with binary weights by
Rastegari et al. [23] (not XNOR-net). The layer configura-
tions and the related metrics are summarized in Table III. As
described in Section III-A, the layers are split into blocks of
nin×nout = 32×32 channels in case of a kernel size of h2

k = 72

and nin × nout = 32 × 64 elsewhere. The first layers have a
high idle rate, but the silenced SoP units consume roughly
no power. To account for this we introduce P̃real = Peff/Pmax
which is calculated. The first layer of AlexNet uses 11 × 11
filters and needs to be split into smaller kernels. We split them
into two filters of 6 × 6 (top-left, bottom-right) and two filters
of 5×5 (bottom-left, top-right), where the center pixel is over-
lapped by both 6 × 6 kernels. By choosing the value for the
overlapping weight appropriately, it is possible to prevent the
need of additional 1 × 1 convolutions: if the original weight
is 1, the overlapping weight of both 6 × 6 kernels are cho-
sen to be 1, otherwise −1 is assigned to one of them and 1
to the other. Instead of 1 × 1 convolutions, just the sum of
the identities of all input channels needs to be subtracted. The
summing of the contributions and subtracting of the identities
is done off-chip.

Table IV gives an overview of the energy efficiency,
throughput, actual frame rate and total energy consumption
for calculating the convolutions, including channel biasing and
scaling in the energy-optimal configuration (at 0.6 V). Table V
shows the same metrics and CNNs for the high-throughput
setting at 1.2 V. It can be noticed that in the energy-optimal
operating point, the achieved throughput is about half of the
maximum possible throughput of 55 GOp/s for most of the
listed CNNs. This can be attributed to the smaller-than-optimal
filter size of 3 × 3, which is frequently used and limits the
throughput to about 20 GOp/s. However, note that the impact
on peak energy-efficiency is only minimal with 59.20 instead
of 61.23 GOp/s/W.

The average energy efficiency of the different networks
is within the range from 48.1 to 56.7 TOp/s/W, except for
AlexNet which reaches 14.1 TOp/s/W due to the dominant first
layer which requires a high computational effort while leaving
the accelerator idling for a large share of the cycles because
of the small number of input channels. The fourth column in
Tables IV and V show the frame rate which can be processed
by YodaNN excluding the fully connected layers and the chip

TABLE IV
OVERVIEW OF SEVERAL NETWORKS IN AN ENERGY OPTIMAL USE

CASE (VCORE = 0.6 V) ON A YODANN ACCELERATOR

TABLE V
OVERVIEW OF SEVERAL NETWORKS IN A THROUGHPUT OPTIMAL

USE CASE (VCORE = 1.2 V) ON A YODANN ACCELERATOR

Fig. 13. Core area efficiency versus core energy efficiency for state-of-the-art
CNN accelerators.

configuration. In the throughput optimal case, the achieved
frame rate is between 13.3 (for VGG-19) and 1428 FPS (for
the BinaryConnect-SVHN network) with a chip power of just
153 mW. In the maximum energy efficiency corner YodaNN
achieves a frame rate between 0.5 and 53.2 FPS at a power of
895μW.

E. Comparison With State-of-the-Art

In Section II, the literature from several software and
architectural approaches have been described. The 32 × 32
channel YodaNN is able to reach a peak throughput of
1.5 TOp/s which outperforms NINEX [27] by a factor of
2.7. In core energy efficiency the design outperforms k-Brain,
NINEX by 5× and more. If the supply voltage is reduced
to 0.6 V, the throughput decreases to 55 GOp/s but the
energy efficiency rises to 61.2 TOp/s, which is more than an
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order-of-magnitude improvement over the previously reported
results [27], [28], [40]. The presented architecture also outper-
forms the compressed neural network accelerator EIE in terms
of energy efficiency by 12× and in terms of area efficiency by
28×, even though they assume a very high degree of sparsity
with 97% zeros [47]. Fig. 13 gives a quantitative comparison
of the state-of-the-art in energy efficiency and area efficiency.
For the sweep of voltages between 1.2 and 0.6 V, YodaNN
builds a clear Pareto front over the state of the art.

V. CONCLUSION

We have presented a flexible, energy-efficient and perfor-
mance scalable CNN accelerator. The proposed architecture
is the first ASIC design exploiting recent results on binary-
weight CNNs, which greatly simplifies the complexity of the
design by replacing fixed-point MAC units with simpler com-
plement operations and multiplexers without negative impact
on classification accuracy. To further improve energy effi-
ciency and extend the performance scalability of the accelera-
tor, we have implemented latch-based SCMs for on-chip data
storage to be able to scale down the operating voltage even fur-
ther. To add flexibility, we support seven different kernel sizes:
1 × 1, 2 × 2, . . . , 7 × 7. This enables efficient evaluation of
a large variety of CNNs. Even though this added flexibility
introduces a 29% reduction in energy efficiency, an outstand-
ing overall energy efficiency of 61 TOp/s/W is achieved. The
proposed accelerator surpasses state-of-the-art CNN accelera-
tors by 2.7× in peak performance with 1.5 TOp/s, by 10× in
peak area efficiency with 1.1 TOp/s/MGE and by 32× peak
energy efficiency with 61.2 TOp/s/W. YodaNN’s power con-
sumption at 0.6 V is 895 μW with an average frame rate of
11 FPS for state-of-the-art CNNs and 16.8 FPS for ResNet-34
at 1.2 V.
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