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Abstract 

We present a new force directed method for global placement. Be- 
sides the well-known wire length dependent forces we use addi- 
tional forces to reduce cell overlaps and to consider the placement 
area. Compared to existing approaches, the main advantage is that 
the algorithm provides increased flexibility and enables a variety of 
demanding applications. Our algorithm is capable of addressing the 
problems of global placement, floorplanning, timing minimization 
and interaction to logic synthesis. Among the considered objective 
functions are area, timing, congestion and heat distribution. The 
iterative nature of the algorithm assures that timing requirements 
are precisely met. While showing similar CPU time requirements 
it outperforms Gordian by an average of 6 percent and Timberwolf 
by an average of 8 percent in wire length and yields significantly 
better timing results. 

1 Introduction 

Automated cell placement for VLSI circuits has always been a key 
factor for achieving designs with optimized area usage and tim- 
ing behavior. Beyond this, the deep-submicron era is posing new 
challenges onto a placement tool: Meeting timing specifications is 
becoming more difficult, floorplanning requires that larger designs 
are placed in less time and a variety of additional physical and ge- 
ometrical constraints must be fulfilled simultaneously. 

A common formulation of the placement objective is to mini- 
mize wire length under the constraint that cells don’t overlap each 
other. Early formulations of the placement problem use forces for 
reducing the overlaps between cells [I]. Complexity and conver- 
gence problems quickly led to the development of more powerful 
methods. The current state-of-the-art placement tools for handling 
large designs can be classified into two categories based on how 
they make sure that the placement is free of overlaps. The first 
class consists of algorithms which keep the placement free of over- 
laps during the whole placement process. Among them, the sim- 
ulated annealing method showed excellent results [2]. The second 

Permission to make digital/hard copy of all or part of this work for personal or 

uted for profit or commercial advantage, the copyright notice, the title of the publi- 
cation and its date appear, and notice is given that copying is by permission of ACM, 
Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
DAC 98, San Francisco, California 
01998 ACM 0-89791-964-5/98/06..$5.00 

classroom use is granted without fee provided that copies are not made or distrib- 

class of algorithms is based on a hierarchical subdivision of the 
placement area with a corresponding partitioning of the set of cells. 
Within this approach, a min-cut objective [3,4] has been used suc- 
cessfully and the combination with a quadratic objective function 
showed best results [5, 6, 71. Partitioning based methods typically 
yield a placement with small overlaps between cells, a so-called 
global placement, which has to be made free of overlaps by a final 
placement step. 

Decreasing feature sizes require that timing issues are consid- 
ered during layout synthesis. Among various techniques to reduce 
circuit delays, placement algorithms can be extended to be tim- 
ing driven. Timing driven placement aims at minimizing the wire 
length of nets along critical paths. Net based approaches transform 
path constraints to net constraints or net weights [8] whereas path 
based approaches can consider the length of the longest path di- 
rectly [9]. 

The mixed-blocldcell placement occurs in floorplanning appli- 
cations. It is typically converted into a block placement problem 
by assigning cells to flexible blocks. Flexible block placement can 
be solved efficiently [IO]. Alternatively, the locations of the blocks 
are set constant before or during the placement process. 

We present a force directed method which uses a new approach 
of dealing with cell overlaps. We use the well-known force di- 
rected formulation and apply additional forces to reduce cell over- 
laps and to distribute cells over the placement area. Our iterative 
approach has the advantage that no hard constraints are used dur- 
ing the placement procedure. This property makes our approach 
much more powerful than partitioning based methods which make 
irreversible decisions at early stages based on incomplete or inac- 
curate information. Moreover, avoiding hard constraints gives the 
algorithm the flexibility to address a variety of applications and 
objective functions. For example, our algorithm is the first one 
which is able to handle large mixed blockkell placement problems 
without treating blocks and cells differently. Contrary to existing 
state-of-the-art methods, our approach can assure that timing re- 
quirements are precisely met. 

The rest of the paper is organized as follows: In section 2 ,  we 
formulate the placement task using the well-known wire length de- 
pendent forces and add an additional force to each cell. This formu- 
lation transforms the placement problem into the problem of find- 
ing the additional forces. Section 3 addresses the problem of de- 
termining the additional forces to reduce cell overlaps and to adapt 
the placement to the placement area. The results from section 2 and 
3 are used in section 4 to formulate an iterative algorithm. Section 
5 illustrates applications for generic cell placement, floorplanning, 
timing minimization and interaction with logic synthesis. In sec- 
tion 6, comparisons with state-of-the-art algorithms demonstrate 
the superiority of our approach with regard to wire length and tim- 
ing optimization. 
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2 Problem Formulation 

In this section, we begin with the standard formulation of the place- 
ment problem where a quadratic objective function is used to model 
wire length. We introduce additional forces working on each cell. 
This formulation transforms the problem of finding cell coordinates 
into the problem of finding forces. The benefit of our formulation is 
that it inherently incorporates wire length minimization. The prob- 
lem of determining additional forces is addressed in section 3. 

3 Determination of the Additional Forces 

2.1 Quadratic Objective Function and Additional Forces 

Let n be the number of movable cells in the circuit, xi the x-coor- 
dinate of the center of cell i and yi the y-coordinate of the center 
of cell i. A placement of the circuit can be described by the 2n- 
dimensional vector p’ = ( X I , .  . . ,xi,. . . ,xn,yl,. . . ,yi,. . . , Y , ) ~ .  

As usual, we are modeling the circuit connectivity as a graph. 
Cells are modeled as vertices and nets are modeled as edges. A net 
connecting k cells yields a clique in the graph. The clique consists 
of k(k- 1)/2 edges with weight l/k connecting each vertex with 
all other vertices. 

We formulate the cost of an edge as the squared Euclidean dis- 
tance between its adjacent vertices multiplied with the weight of the 
edge. The squared Euclidean distance between two movable cells i 
and j is (xi - ~ j ) ~  + (yi - ~ j ) ~ .  If cell i is connected to a fixed cell 
with coordinates ( xJ - !~J - ) ,  the distance is (xi - ~ f ) ~  + (yi - y ~ - ) ~ .  
Consequently, the Objective function sums up the cost of all edges 
and can be written in matrix notation [I 11 

1 
-piT~jj+dTp’+const 2 

by using_ the 2n x 2n symmetric matrix C and the 2n-dimensional 
vector d. For example, the x-part of the connection between two 
movablecellsiand j i s  ( x i - ~ j ) ~  =x?-2.xi.xj+xJ?. Thefirstterm 
contributes to the diagonal of C at row i, the second term causes 
negative entries at row i, column j and at row j ,  column i. The 
third term is a contribution to the diagonal of C at row j .  In case of 
a fixed connection, (xi - X J - ) ~  evaluates to xi’ - 2 .xi ’ X J -  +x;. The 
first term is a contribution to the diagonal of C, the second term 
gives a negative entry at d’ in row i and the third term affects the 
constant part of (1). The objective function (1) is minimized by 
solving the linear equation system 

cp+d=o (2) 
This formulation is equivalent to modeling nets as springs and 

calculating the state of equilibrium. In detail, row i (row i + n) of 
equation system (2) states that the force working on cell i is zero in 
x direction 0, direction). 

2.2 Additional Forces 

In the following, we introduce additional forces working on each 
cell. We extend equation (2) with the force vector e’ to model con- 
stant additional forces: 

cp+d’+a=o (3) 
The force vector e’ contains the additional forces working on the 
cells in the x and y direction. Equation (3) transforms the prob- 
lem of finding a placement into the problem of finding additional 
forces Zand calculating the placement p’ according to (3). It is easy 
to show that the introduction of forces does not restrict the solu- 
tion space, i.e. any given placement can fulfill equation (3) if the 
additional forces Z are chosen appropriately. 

In this section, we present a specific choice ofhow additional forces 
can be used. We take advantage from the fact that equation (2) 
already inherently minimizes wire length and formulate a specific 
choice for the additional forces from which we derive a unique set 
of forces. 

3.1 

Additional forces shall be used to distribute the cells evenly 
over the placement area. 

Motivation: Solving equation (2) gives the global optimum with 
regard to squared wire length. However, equation (2) neither con- 
siders the overlaps of the cells nor the placement area. Therefore, 
the resulting placement is overlapping and not well distributed over 
the placement area in general. We use the additional forces in equa- 
tion (3) to remove cell overlaps and to adapt the placement to the 
placement area. 

Specific Choice of Additional Forces 

3.2 Requirements 

In the following, we derive four requirements for the additional 
forces. 

1. 

2 .  

3. 

4. 

3.3 

For a given placement, the additional force working on a cell 
depends only on the coordinates of the cell. 
Motivation: If the task of the forces is to reduce the overlaps 
of the cells, it is only natural that a cell at the same place as 
another cell gets the same force. 

Regions with higher density are the sources of the forces. 
Regions with lower density are the sinks. 
Motivation: Forces should move cells away from high den- 
sity regions and lead them to low density regions. 

The forces do not form circles. 
Motivation: The purpose of the forces is to improve the dis- 
tribution. A circular force does not improve the distribution 
and is of no use. 

In infinity, the force should be zero. 
Motivation: This requirement prevents the existence of a con- 
stant force. 

Mathematical Formulation and Solution 

We now show that these four requirements are sufficient to uniquely 
determine the forces. The basic background of how the require- 
ments can be put into mathematical formulations can be found in 

The first requirement allows us to write the additional force A 
at cell i as a function ofx andy: 3 = ~ ( X , ~ ) I ~ = ~ , ~ ~ ~ ,  

For the second requirement we define a supply-and-demand 
model for describing the density at a given point. We first define 
the rectangle function R(z):  

u21. 

The width of cell i is denoted by wi, the height of cell i is hi. 
The function ai(x,y) describes the area of cell i and is defined as 
ai(x,y) = R ( ” 2 )  . R ( Y ) .  The value of ai(x,y) is one for a point 
(x,y) which is covered by cell i and zero otherwise. 
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Using W as the width of the placement area and H as its height, 
the area function A(x ,y )  of the placement area can be defined sim- 
ilarly as A(x,y)  = R( 6) . R( 5). The value of A(x ,y )  is one for a 
point (x ,y )  within the placement area and zero otherwise. 

With the definition of s as the quotient of total cell area and 
placement area we define a function for the density D(x,y) :  

(4) 
Ci wi . hi 

D(x,y) = x a i ( x , y )  - s . A ( x , y )  with s = - 
i W * H  

In other words: The density at a certain point within the place- 
ment area is the number of cells which cover the point, minus s. 

The first term of equation (4) can be seen as the demand of 
area by the cells. The second term is the supply of area from the 
placement area scaled by factor s. The integral of D(x,y) over the 
whole area is zero. This is achieved by scaling the supply with 
s. Let us note that D(x,y) > 0 at locations with higher density than 
desired and D(x,y) < 0 at locations with lower density than desired. 

Using a proportional constant k, requirement 2 gives [ 121 

Requirement 3 means that f(x,y) is conservative, i.e. there exists a 
scalar function @(x,y) with 

Combining (5) and (6) results in Poisson's equation 

with boundary conditions from requirement 4 

4.1 Placement Transformation 

We call one step of the algorithm a placement transformation. The 
input placement can be arbitrary. The transformation step can be 
applied to fully overlapping placements as well as nearly legal pla- 
cements. We do not consider information from the past like the 
number of iterations or a certain cooling schedule. 

We determine the forces J'i of the current placement accord- 
ing to equation (9). We choose the proportional constant k so that 
the maximum strength of all forces 3. is equivalent to the force 
of a net with length K .  (W +H) with a constant parameter K as 
user parameter. The parameter K determines how strongly the ad- 
ditional forces influence the placement and therefore determines 
the speed of convergence and the quality of the results. Next, 
we add the determined additionai forces 3 to the force vector e': 
(Aei,Ae,+i)T=J. Matrix C is sei up as described in section 2.1. 
We apply a linearization scheme for adjusting netweights [ 141 and 
solve equation (3) by using a conjugate gradient approach with pre- 
conditioning. During the solving step of equation (3) we assume 
that the additional forces e' remain constant. 

4.2 The Iterative Algorithm 

The complete algorithm consists of three key elements: 

1. Initialization: In the initial routine, all cells are placed at the 
center of the placement area and the forces e' are set to zero. 

2.  Iteration loop: We iteratively apply placement transforma- 
tions. We use K to control the desired speed of the algorithm. 
We choose K = 0.2 for standard behavior while K = 1 .O is 
used for fast operation. Each iteration makes the distribution 
of the cells more even and adapts the placement more to the 
dacement area. 

This standard problem has a unique solution for f ( x , y )  [ 131 : 
3. Stopping criterion: We stop the iterations when there exists 

3.4 Interpretation 

In the case of modeling cells as points and subdividing the place- 
ment area into places with unit area, the above integral becomes a 
discrete sum and equation (9) can be interpreted informally to make 
its meaning and its nature more clear: 

1. The force working on a cell is the superposition of the forces 
originating from other cells and places. 

2. The force exerted on a cell by another cell (place) is repelling 
(attracting) with a strength proportional to the inverse of their 
Euclidean distance. 

no empty square within the placement area which is larger 
than four times the average area of a cell. Our experiments 
showed that this criterion is, sufficient for a desired even dis- 
tribution of cells. 

5 Application to Placement Tasks 

In this section we describe what placement tasks can be addressed 
by the algorithm. We also describe which extensions have to be 
made for the different applications. 

Timing Optimization We apply an iterative net weighting ap- 
proach in order to optimize the timing behavior. We use the Elmore 
delay model based on the half perimeter of the enclosing rectangle 
as net delay. At iteration step m, each net j has a criticality e!?. 

3. The direction of the force is parallel to the straight line be- we initialize c:O) with and update it as follows~ tween the cells (between the cell and the place, resp.). Before each placement transformation, we carry out a longest 

4 Basic Algorithm 
path search for timing analysis. This gives us the maximum delay 
and the minimum slack for each net. Please note that our approach 
does not rely on this special model as it works well with aiy kind 
oftiming analysis. We now combine the results from section 2 and 3. The forces in 

section 2 have been assumed to be constant whereas section 3 states 
that forces depend on the location of the corresponding cell. We 

We define the criticality of net j at step m as 

+ 1)/2 if net j is among the 3 percent most 
critical nets 

resolve this cbnflict by introducing an iterative- algori&n which 
determines the forces according to the current placement. These 
forces are set constant and used to calculate a new dacement. The 'f' = 

new placement then is the base for the next iteration step and so on. 
We first describe a single iteration step called 'placement trans- 

formation'. Then, we show how a global placement can be achieved 
by successively applying placement transformations. 

[ c?-''/2 otherwise 

The criticality describes how critical a net tends to be in general 
and is used later for our weight updating scheme. A net which is 
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critical at step m contributes 50 % to its criticality, a net which is 
critical at step m - 1 contributes 25 % and so on. For example, 
if a net was never critical its criticality is zero whereas an always 
critical net has a criticality of one. This scheme effectively reduces 
oscillations of netweights. 

Each net j has an associated weight wy). The initial weights 
J 

wio) are set to one. We multiply the weight w:y-’) of net j with 

1 + c:!’ and get the new weight w:?’. For example, a net which 

has never been critical has c y ’  = 0 and keeps its weight wjm’ = 

IVY-”. The weight of a net which has always been critical is mul- 

tiplied by a factor of 2: wjy) = 2 e wy-”. 
Our timing optimization especially benefits from the fact that 

even in late stages the placement has the ability to change globally 
because there are no hard constraints. This property makes our 
approach much more powerful than other methods where decisions 
at early stages have to be made based on incomplete or inaccurate 
information. 

Meeting Timing Requirements The task of meeting a given 
timing requirement is different from optimizing the longest path 
delay. A timing requirement is a constraint under which other cri- 
teria should be optimized. 

The typical approach with existing methods is iterative on a 
coarse level. The timing behavior of the resulting placement is 
compared to the specifications. Then, the input data is changed 
to make the method more aggressive or less aggressive. Additional 
placement runs are carried out until the desired timing behavior is 
obtained. 

In order to avoid these multiple placement runs, we propose an 
extension to the described algorithm which directly meets timing 
requirements. First, we run the basic non-timing driven algorithm 
until it converges. We now have an area optimized placement. 
Then, we carry out a net weight adaption before each placement 
transformation. This net weight adaption is the same as described 
for timing optimization. In order to get a timingiarea tradeoff curve 
we record the wire length and timing data for each step. We stop 
after the timing requirements are met. Since we used the result- 
ing placement for timing analysis we can assure that the placement 
meets precisely the timing requirements. 

Compared to existing methods, our approach has two major ad- 
vantages: It guarantees that the timing requirements are precisely 
met if it is possible at all. No hrther reruns of the placement algo- 
rithm are necessary. Secondly, our two-phase approach provides a 
tradeoff curve showing which timing can be achieved at which area 
cost. 

Mixed Block Placement and Floorplanning Using place- 
ment programs for floorplanning can yield problem sizes of several 
hundreds of thousands of cells. Floorplanning is a highly interac- 
tive task and the placement step is carried out multiple times result- 
ing in the need for fast placement. Moreover, floorplanning poses 
the problem of placing big blocks and small cells simultaneously. 
Existing approaches are either not able to cope with the large prob- 
lem size or disregard the dimension of the big blocks (at least at 
some step of the algorithm). Simulated annealing methods suffer 
from the fact that moving big cells is computationally intensive and 
partitioning based methods disregard the dimension of the big cells. 

Contrary to that, our algorithm is the first one which is able to 
handle large mixed block/cell placement problems without treating 
blocks and cells differently. 

Congestion and Heat Driven Placement Since the modeling 
of the force sources is done by a supply and demand model, it is 
straightforward to extend the procedure to incorporate congestion 
information. Before each placement transformation a routing esti- 
mation is executed. Then, a congestion map is determined which 
is used in combination with the density D(x,y)  to calculate addi- 
tional forces. With this approach, the placement and the congestion 
map converge simultaneously and yield a placement which directly 
considers the resulting congestion. Additionally, by replacing the 
congestion map with a heat map we can use the same approach to 
avoid hot spots in the layout. 

ECO and Interaction with Logic Synthesis Our approach is 
well suited for netlist changes during placement and for consider- 
ing netlist changes after placement. This feature is typically needed 
by the application of ECO, gate resizing techniques and fully au- 
tomated interaction with logic synthesis. The main requirement is 
that the existing placement is disturbed as little as possible. 

Our method starts from the given placement and introduces 
additional forces according to the density deviations arising from 
netlist changes. Any changes in the netlist result in additional 
forces which move the surroundings slightly in order to adapt to the 
changed situation. The placement of cells relative to each other is 
preserved. The deviations in density are typically small which leads 
to small additional forces resulting in small changes for the place- 
ment. Compared to other methods, our approach has the advantage 
that an incrementally changed netlist results in small changes in the 
placement. 

6 Experimental Results 

We used the benchmark set from [I51 for comparison. Table 1 
shows the parameters of the circuits. Wire length is measured by 
summing up the half perimeter of the enclosing rectangle for each 
net. CPU times are measured in seconds for an Alphastation 250/4- 
266. CPU times of other approaches are scaled according to [ 161. 

6.1 Standard Cell Benchmarks 

We compare our results to the state-of-the-art methods Gordian/Do- 
mino [ 14, 171 and Timberwolf [2]. As final placer for the proposed 
method we used Domino [17]. The reported CPU times include 
the time used for final placement. The GordiadDomino values are 
taken from [2]. We take the Timberwolf values from [ 18, 191 which 
are summarized in [ 2 ] .  

Since results for circuit struct have not been published, we ran 
Timberwolf 1.3.0 and GordiadDomino 9.4 in their default config- 
uration to obtain the values for circuit struct. 

Table 1 lists the absolute values. The columns ‘wire length’ 
show the wire length in meters and ‘CPU’ the CPU time in seconds. 
We used the standard mode (K = 0.2) of our approach. 

For better comparison, we also list the results relative to other 
methods in table 2. The columns ‘improvement’ give the wire 
length improvement in percent. Positive values mean that our ap- 
proach is better. Columns ‘rel. CPU’ give the CPU time of our 
approach divided by the (scaled) time of the compared approach. 
Therefore, values smaller than 1.0 mean that our approach is faster. 

One can see that our results are comparable with Timberwolf 
while using one third of the runtime. A comparison under similar 
runtime conditions (approximately 40 percent slower) outperforms 
Timberwolf by 7.9 percent and Gordian/Domino by 6.6 percent in 
wire length on the average. 

We further investigated the qualityiruntime tradeoff of our ap- 
proach. Our motivation is that a fast placement is useful to achieve 
a placement estimation during the floorplanning phase. We com- 
pared the fast (K  = 1.0) and the standard (K = 0.2) mode of our 
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111 #cells #nets 

147 
circuit 111 

# rows T.-Wolf [ 191 T.-Wolf [ 181 
wire CPU wire CPU wire 

length length length length 
rm1 [SI rm1 [SI rm1 [s3 

6 -- I, 

16 
21 
28 
46 
72 
54 
80 
86 

0.364 

1.62 
13.53 
42.84 

5.41 
5.86 

904 
1920 
3029 
5742 

13419 
2 1940 
22124 
25384 

T.-Wolf [I91 
circuit % im- rel. 

prove- CPU 

primary 1 - 
ment 

struct +7.1 0.14 
primary2 - 
biomed -9.8 0.32 
industry2 -7.9 0.39 
industry3 -5.2 0.35 
avq.smal1 +9.2 0.37 
avq.large +8.1 0.36 
average +0.2 0.32 

T.-Wolf [18] Go./Do. [I71 
% im- rel. % im- rel. 
prove- CPU prove- CPU 

ment ment 
+12.1 1.68 +1.1 2.17 

- +11.5 1.33 
0.0 1.21 -1.1 1.65 

+5.3 1.31 +8.7 1.07 
-1.8 1.38 +7.5 1.33 
-0.9 1.83 -0.2 1.55 

+19.9 1.33 +13.5 0.99 
+20.9 1.30 +13.3 0.96 
+7.9 1.43 +6.6 1.38 

5501 

15.80 
44.97 

Table 1 : Benchmarks: Wire Length and CPU Time 

Table 2: Comparisons to Other Approaches: Wire Length Improve- 
ment and Relative CPU Times 

approach. Using the fast mode, we can calculate a placement in ap- 
proximately one third of the time compared to the standard mode. 
The average wire length increase is 6 percent. Within 10 min- 
utes, the fast approach is capable of obtaining a legal placement for 
25 000 cells which could not be obtained by any other approach. 

6.2 Timing 

For better comparison to existing methods, we introduce a lower 
bound for the length of the longest path by setting all wire lengths to 
zero and performing a timing analysis. This lower bound can only 
be reached if all nets of the longest path have length zero which 
means that all cells would be interconnected by abutment. Then, 
we calculate the longest path of a placement without timing opti- 
mization and subtract the lower bound. This gives the optimization 
potential of the placement. Next, we calculate the reduction of the 
longest path by using timing optimization. Dividing this value by 
the optimization potential tells us how much the method could ex- 
ploit the optimization potential, i.e. how good it is. Measuring the 
performance in the proposed way helps us to reduce the influence 
of differences in net models, timing models and timing parameters. 

We compare our method to [20] and [21] which has been shown 
to be superior to [22]. Since having big nets in the longest path is 
not realistic we disregard nets with more than 60 pins for timing 
analysis in our approach. Therefore, the lower bound used for our 
approach is different from the lower bound used for the other ap- 
proaches in the case of ‘avq.smal1’ and ‘avq.large’. Using the same 
lower bound would give unrealistic good results. 
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As in [21], we assume a capacitance per length of 242 pF/m 
and a resistance per length of 25.5 wZ/m. Table 3 shows the results. 
Columns ‘without timing’ list the results without timing optimiza- 
tion, ‘with timing’ the results for timing optimization. All timing 
values are in nanoseconds. 

Table 4 demonstrates the capability of exploiting the optimiza- 
tion potential. The columns ‘lower bound’ list the lower bound in 
nanoseconds which we used for calculating the optimization poten- 
tial. The columns ‘exploitation’ show the exploitation of the opti- 
mization potential. Higher values mean better timing optimization. 
Columns ‘relative CPU’ contain the CPU time requirement relative 
to our approach. Values larger than one mean that the compared 
method is slower. 

On the average, the compared methods can exploit the opti- 
mization potential by up to 42 percent whereas our method utilizes 
53 percent of the optimization potential and requires less CPU time. 

7 Conclusions 

The upcoming placement tasks pose new challenges to placement 
tools. They must be capable of placing larger netlist in less time, of 
considering more geometrical and physical constraints, and of deal- 
ing with more complicated timing requirements. Moreover, they 
must provide a flexible interface for manual changes as well as for 
changes introduced by logic synthesis tools. 

To address these tasks, we proposed an iterative force directed 
method. A new approach has been presented which uses additional 
forces to remove cell overlaps and to adapt the placement to the 
placement area. The approach has the advantage that no hard con- 
straints are used during the placement procedure. This property 
makes our approach much more powerful than existing methods 
which make irreversible decisions at early stages that are based on 
incomplete or inaccurate information. The avoidance of hard con- 
straints gives the algorithm the flexibility to address a variety of 
applications and objective functions. For example, our algorithm is 
the first one which is able to handle large mixed blockkell place- 
ment problems without treating blocks and cells differently. Con- 
trary to state-of-the-art approaches, our approach can assure that 
timing requirements are precisely met. While using comparable or 
less CPU time, our approach outperforms Gordian and Timberwolf 
by an average of 6 and 8 percent in wire length and yields signifi- 
cantly better timing results. 
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