
17.1

Generic Global Placement and Floorplanning

Hans Eisenmann and Frank M. Johannes

http://www.regent .e-technik.tu-muenchen.de
Institute of Electronic Design Automation

Technical University Munich
80290 Munich

Germany

Abstract

We present a new force directed method for global placement. Be-
sides the well-known wire length dependent forces we use addi-
tional forces to reduce cell overlaps and to consider the placement
area. Compared to existing approaches, the main advantage is that
the algorithm provides increased flexibility and enables a variety of
demanding applications. Our algorithm is capable of addressing the
problems of global placement, floorplanning, timing minimization
and interaction to logic synthesis. Among the considered objective
functions are area, timing, congestion and heat distribution. The
iterative nature of the algorithm assures that timing requirements
are precisely met. While showing similar CPU time requirements
it outperforms Gordian by an average of 6 percent and Timberwolf
by an average of 8 percent in wire length and yields significantly
better timing results.

1 Introduction

Automated cell placement for VLSI circuits has always been a key
factor for achieving designs with optimized area usage and tim-
ing behavior. Beyond this, the deep-submicron era is posing new
challenges onto a placement tool: Meeting timing specifications is
becoming more difficult, floorplanning requires that larger designs
are placed in less time and a variety of additional physical and ge-
ometrical constraints must be fulfilled simultaneously.

A common formulation of the placement objective is to mini-
mize wire length under the constraint that cells don’t overlap each
other. Early formulations of the placement problem use forces for
reducing the overlaps between cells [I]. Complexity and conver-
gence problems quickly led to the development of more powerful
methods. The current state-of-the-art placement tools for handling
large designs can be classified into two categories based on how
they make sure that the placement is free of overlaps. The first
class consists of algorithms which keep the placement free of over-
laps during the whole placement process. Among them, the sim-
ulated annealing method showed excellent results [2]. The second

Permission to make digital/hard copy of all or part of this work for personal or

uted for profit or commercial advantage, the copyright notice, the title of the publi-
cation and its date appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 98, San Francisco, California
01998 ACM 0-89791-964-5/98/06..$5.00

classroom use is granted without fee provided that copies are not made or distrib-

class of algorithms is based on a hierarchical subdivision of the
placement area with a corresponding partitioning of the set of cells.
Within this approach, a min-cut objective [3,4] has been used suc-
cessfully and the combination with a quadratic objective function
showed best results [5, 6, 71. Partitioning based methods typically
yield a placement with small overlaps between cells, a so-called
global placement, which has to be made free of overlaps by a final
placement step.

Decreasing feature sizes require that timing issues are consid-
ered during layout synthesis. Among various techniques to reduce
circuit delays, placement algorithms can be extended to be tim-
ing driven. Timing driven placement aims at minimizing the wire
length of nets along critical paths. Net based approaches transform
path constraints to net constraints or net weights [8] whereas path
based approaches can consider the length of the longest path di-
rectly [9].

The mixed-blocldcell placement occurs in floorplanning appli-
cations. It is typically converted into a block placement problem
by assigning cells to flexible blocks. Flexible block placement can
be solved efficiently [IO]. Alternatively, the locations of the blocks
are set constant before or during the placement process.

We present a force directed method which uses a new approach
of dealing with cell overlaps. We use the well-known force di-
rected formulation and apply additional forces to reduce cell over-
laps and to distribute cells over the placement area. Our iterative
approach has the advantage that no hard constraints are used dur-
ing the placement procedure. This property makes our approach
much more powerful than partitioning based methods which make
irreversible decisions at early stages based on incomplete or inac-
curate information. Moreover, avoiding hard constraints gives the
algorithm the flexibility to address a variety of applications and
objective functions. For example, our algorithm is the first one
which is able to handle large mixed blockkell placement problems
without treating blocks and cells differently. Contrary to existing
state-of-the-art methods, our approach can assure that timing re-
quirements are precisely met.

The rest of the paper is organized as follows: In section 2 , we
formulate the placement task using the well-known wire length de-
pendent forces and add an additional force to each cell. This formu-
lation transforms the placement problem into the problem of find-
ing the additional forces. Section 3 addresses the problem of de-
termining the additional forces to reduce cell overlaps and to adapt
the placement to the placement area. The results from section 2 and
3 are used in section 4 to formulate an iterative algorithm. Section
5 illustrates applications for generic cell placement, floorplanning,
timing minimization and interaction with logic synthesis. In sec-
tion 6, comparisons with state-of-the-art algorithms demonstrate
the superiority of our approach with regard to wire length and tim-
ing optimization.

269

http://www.regent
http://e-technik.tu-muenchen.de

2 Problem Formulation

In this section, we begin with the standard formulation of the place-
ment problem where a quadratic objective function is used to model
wire length. We introduce additional forces working on each cell.
This formulation transforms the problem of finding cell coordinates
into the problem of finding forces. The benefit of our formulation is
that it inherently incorporates wire length minimization. The prob-
lem of determining additional forces is addressed in section 3.

3 Determination of the Additional Forces

2.1 Quadratic Objective Function and Additional Forces

Let n be the number of movable cells in the circuit, xi the x-coor-
dinate of the center of cell i and yi the y-coordinate of the center
of cell i. A placement of the circuit can be described by the 2n-
dimensional vector p’ = (X I , . . . ,xi,. . . ,xn,yl,. . . ,yi,. . . , Y ,) ~ .

As usual, we are modeling the circuit connectivity as a graph.
Cells are modeled as vertices and nets are modeled as edges. A net
connecting k cells yields a clique in the graph. The clique consists
of k(k- 1)/2 edges with weight l/k connecting each vertex with
all other vertices.

We formulate the cost of an edge as the squared Euclidean dis-
tance between its adjacent vertices multiplied with the weight of the
edge. The squared Euclidean distance between two movable cells i
and j is (xi - ~ j) ~ + (yi - ~ j) ~ . If cell i is connected to a fixed cell
with coordinates (xJ - !~J -) , the distance is (xi - ~ f) ~ + (yi - y ~ -) ~ .
Consequently, the Objective function sums up the cost of all edges
and can be written in matrix notation [I 11

1
-piT~jj+dTp’+const 2

by using_ the 2n x 2n symmetric matrix C and the 2n-dimensional
vector d. For example, the x-part of the connection between two
movablecellsiand j i s (x i - ~ j) ~ =x?-2.xi.xj+xJ?. Thefirstterm
contributes to the diagonal of C at row i, the second term causes
negative entries at row i, column j and at row j , column i. The
third term is a contribution to the diagonal of C at row j . In case of
a fixed connection, (xi - X J -) ~ evaluates to xi’ - 2 .xi ’ X J - +x;. The
first term is a contribution to the diagonal of C, the second term
gives a negative entry at d’ in row i and the third term affects the
constant part of (1). The objective function (1) is minimized by
solving the linear equation system

cp+d=o (2)
This formulation is equivalent to modeling nets as springs and

calculating the state of equilibrium. In detail, row i (row i + n) of
equation system (2) states that the force working on cell i is zero in
x direction 0, direction).

2.2 Additional Forces

In the following, we introduce additional forces working on each
cell. We extend equation (2) with the force vector e’ to model con-
stant additional forces:

cp+d’+a=o (3)
The force vector e’ contains the additional forces working on the
cells in the x and y direction. Equation (3) transforms the prob-
lem of finding a placement into the problem of finding additional
forces Zand calculating the placement p’ according to (3). It is easy
to show that the introduction of forces does not restrict the solu-
tion space, i.e. any given placement can fulfill equation (3) if the
additional forces Z are chosen appropriately.

In this section, we present a specific choice ofhow additional forces
can be used. We take advantage from the fact that equation (2)
already inherently minimizes wire length and formulate a specific
choice for the additional forces from which we derive a unique set
of forces.

3.1

Additional forces shall be used to distribute the cells evenly
over the placement area.

Motivation: Solving equation (2) gives the global optimum with
regard to squared wire length. However, equation (2) neither con-
siders the overlaps of the cells nor the placement area. Therefore,
the resulting placement is overlapping and not well distributed over
the placement area in general. We use the additional forces in equa-
tion (3) to remove cell overlaps and to adapt the placement to the
placement area.

Specific Choice of Additional Forces

3.2 Requirements

In the following, we derive four requirements for the additional
forces.

1.

2 .

3.

4.

3.3

For a given placement, the additional force working on a cell
depends only on the coordinates of the cell.
Motivation: If the task of the forces is to reduce the overlaps
of the cells, it is only natural that a cell at the same place as
another cell gets the same force.

Regions with higher density are the sources of the forces.
Regions with lower density are the sinks.
Motivation: Forces should move cells away from high den-
sity regions and lead them to low density regions.

The forces do not form circles.
Motivation: The purpose of the forces is to improve the dis-
tribution. A circular force does not improve the distribution
and is of no use.

In infinity, the force should be zero.
Motivation: This requirement prevents the existence of a con-
stant force.

Mathematical Formulation and Solution

We now show that these four requirements are sufficient to uniquely
determine the forces. The basic background of how the require-
ments can be put into mathematical formulations can be found in

The first requirement allows us to write the additional force A
at cell i as a function ofx andy: 3 = ~ (X , ~) I ~ = ~ , ~ ~ ~ ,

For the second requirement we define a supply-and-demand
model for describing the density at a given point. We first define
the rectangle function R(z):

u21.

The width of cell i is denoted by wi, the height of cell i is hi.
The function ai(x,y) describes the area of cell i and is defined as
ai(x,y) = R (” 2) . R (Y) . The value of ai(x,y) is one for a point
(x,y) which is covered by cell i and zero otherwise.

270

Using W as the width of the placement area and H as its height,
the area function A(x ,y) of the placement area can be defined sim-
ilarly as A(x,y) = R(6) . R(5). The value of A(x ,y) is one for a
point (x ,y) within the placement area and zero otherwise.

With the definition of s as the quotient of total cell area and
placement area we define a function for the density D(x,y) :

(4)
Ci wi . hi

D(x,y) = x a i (x , y) - s . A (x , y) with s = -
i W * H

In other words: The density at a certain point within the place-
ment area is the number of cells which cover the point, minus s.

The first term of equation (4) can be seen as the demand of
area by the cells. The second term is the supply of area from the
placement area scaled by factor s. The integral of D(x,y) over the
whole area is zero. This is achieved by scaling the supply with
s. Let us note that D(x,y) > 0 at locations with higher density than
desired and D(x,y) < 0 at locations with lower density than desired.

Using a proportional constant k, requirement 2 gives [121

Requirement 3 means that f(x,y) is conservative, i.e. there exists a
scalar function @(x,y) with

Combining (5) and (6) results in Poisson's equation

with boundary conditions from requirement 4

4.1 Placement Transformation

We call one step of the algorithm a placement transformation. The
input placement can be arbitrary. The transformation step can be
applied to fully overlapping placements as well as nearly legal pla-
cements. We do not consider information from the past like the
number of iterations or a certain cooling schedule.

We determine the forces J'i of the current placement accord-
ing to equation (9). We choose the proportional constant k so that
the maximum strength of all forces 3. is equivalent to the force
of a net with length K . (W +H) with a constant parameter K as
user parameter. The parameter K determines how strongly the ad-
ditional forces influence the placement and therefore determines
the speed of convergence and the quality of the results. Next,
we add the determined additionai forces 3 to the force vector e':
(Aei,Ae,+i)T=J. Matrix C is sei up as described in section 2.1.
We apply a linearization scheme for adjusting netweights [141 and
solve equation (3) by using a conjugate gradient approach with pre-
conditioning. During the solving step of equation (3) we assume
that the additional forces e' remain constant.

4.2 The Iterative Algorithm

The complete algorithm consists of three key elements:

1. Initialization: In the initial routine, all cells are placed at the
center of the placement area and the forces e' are set to zero.

2. Iteration loop: We iteratively apply placement transforma-
tions. We use K to control the desired speed of the algorithm.
We choose K = 0.2 for standard behavior while K = 1 .O is
used for fast operation. Each iteration makes the distribution
of the cells more even and adapts the placement more to the
dacement area.

This standard problem has a unique solution for f (x , y) [131 :
3. Stopping criterion: We stop the iterations when there exists

3.4 Interpretation

In the case of modeling cells as points and subdividing the place-
ment area into places with unit area, the above integral becomes a
discrete sum and equation (9) can be interpreted informally to make
its meaning and its nature more clear:

1. The force working on a cell is the superposition of the forces
originating from other cells and places.

2. The force exerted on a cell by another cell (place) is repelling
(attracting) with a strength proportional to the inverse of their
Euclidean distance.

no empty square within the placement area which is larger
than four times the average area of a cell. Our experiments
showed that this criterion is, sufficient for a desired even dis-
tribution of cells.

5 Application to Placement Tasks

In this section we describe what placement tasks can be addressed
by the algorithm. We also describe which extensions have to be
made for the different applications.

Timing Optimization We apply an iterative net weighting ap-
proach in order to optimize the timing behavior. We use the Elmore
delay model based on the half perimeter of the enclosing rectangle
as net delay. At iteration step m, each net j has a criticality e!?.

3. The direction of the force is parallel to the straight line be- we initialize c:O) with and update it as follows~ tween the cells (between the cell and the place, resp.). Before each placement transformation, we carry out a longest

4 Basic Algorithm
path search for timing analysis. This gives us the maximum delay
and the minimum slack for each net. Please note that our approach
does not rely on this special model as it works well with aiy kind
oftiming analysis. We now combine the results from section 2 and 3. The forces in

section 2 have been assumed to be constant whereas section 3 states
that forces depend on the location of the corresponding cell. We

We define the criticality of net j at step m as

+ 1)/2 if net j is among the 3 percent most
critical nets

resolve this cbnflict by introducing an iterative- algori&n which
determines the forces according to the current placement. These
forces are set constant and used to calculate a new dacement. The 'f' =

new placement then is the base for the next iteration step and so on.
We first describe a single iteration step called 'placement trans-

formation'. Then, we show how a global placement can be achieved
by successively applying placement transformations.

[c?-''/2 otherwise

The criticality describes how critical a net tends to be in general
and is used later for our weight updating scheme. A net which is

27 1

critical at step m contributes 50 % to its criticality, a net which is
critical at step m - 1 contributes 25 % and so on. For example,
if a net was never critical its criticality is zero whereas an always
critical net has a criticality of one. This scheme effectively reduces
oscillations of netweights.

Each net j has an associated weight wy). The initial weights
J

wio) are set to one. We multiply the weight w:y-’) of net j with

1 + c:!’ and get the new weight w:?’. For example, a net which

has never been critical has c y ’ = 0 and keeps its weight wjm’ =

IVY-”. The weight of a net which has always been critical is mul-

tiplied by a factor of 2: wjy) = 2 e wy-”.
Our timing optimization especially benefits from the fact that

even in late stages the placement has the ability to change globally
because there are no hard constraints. This property makes our
approach much more powerful than other methods where decisions
at early stages have to be made based on incomplete or inaccurate
information.

Meeting Timing Requirements The task of meeting a given
timing requirement is different from optimizing the longest path
delay. A timing requirement is a constraint under which other cri-
teria should be optimized.

The typical approach with existing methods is iterative on a
coarse level. The timing behavior of the resulting placement is
compared to the specifications. Then, the input data is changed
to make the method more aggressive or less aggressive. Additional
placement runs are carried out until the desired timing behavior is
obtained.

In order to avoid these multiple placement runs, we propose an
extension to the described algorithm which directly meets timing
requirements. First, we run the basic non-timing driven algorithm
until it converges. We now have an area optimized placement.
Then, we carry out a net weight adaption before each placement
transformation. This net weight adaption is the same as described
for timing optimization. In order to get a timingiarea tradeoff curve
we record the wire length and timing data for each step. We stop
after the timing requirements are met. Since we used the result-
ing placement for timing analysis we can assure that the placement
meets precisely the timing requirements.

Compared to existing methods, our approach has two major ad-
vantages: It guarantees that the timing requirements are precisely
met if it is possible at all. No hrther reruns of the placement algo-
rithm are necessary. Secondly, our two-phase approach provides a
tradeoff curve showing which timing can be achieved at which area
cost.

Mixed Block Placement and Floorplanning Using place-
ment programs for floorplanning can yield problem sizes of several
hundreds of thousands of cells. Floorplanning is a highly interac-
tive task and the placement step is carried out multiple times result-
ing in the need for fast placement. Moreover, floorplanning poses
the problem of placing big blocks and small cells simultaneously.
Existing approaches are either not able to cope with the large prob-
lem size or disregard the dimension of the big blocks (at least at
some step of the algorithm). Simulated annealing methods suffer
from the fact that moving big cells is computationally intensive and
partitioning based methods disregard the dimension of the big cells.

Contrary to that, our algorithm is the first one which is able to
handle large mixed block/cell placement problems without treating
blocks and cells differently.

Congestion and Heat Driven Placement Since the modeling
of the force sources is done by a supply and demand model, it is
straightforward to extend the procedure to incorporate congestion
information. Before each placement transformation a routing esti-
mation is executed. Then, a congestion map is determined which
is used in combination with the density D(x,y) to calculate addi-
tional forces. With this approach, the placement and the congestion
map converge simultaneously and yield a placement which directly
considers the resulting congestion. Additionally, by replacing the
congestion map with a heat map we can use the same approach to
avoid hot spots in the layout.

ECO and Interaction with Logic Synthesis Our approach is
well suited for netlist changes during placement and for consider-
ing netlist changes after placement. This feature is typically needed
by the application of ECO, gate resizing techniques and fully au-
tomated interaction with logic synthesis. The main requirement is
that the existing placement is disturbed as little as possible.

Our method starts from the given placement and introduces
additional forces according to the density deviations arising from
netlist changes. Any changes in the netlist result in additional
forces which move the surroundings slightly in order to adapt to the
changed situation. The placement of cells relative to each other is
preserved. The deviations in density are typically small which leads
to small additional forces resulting in small changes for the place-
ment. Compared to other methods, our approach has the advantage
that an incrementally changed netlist results in small changes in the
placement.

6 Experimental Results

We used the benchmark set from [I51 for comparison. Table 1
shows the parameters of the circuits. Wire length is measured by
summing up the half perimeter of the enclosing rectangle for each
net. CPU times are measured in seconds for an Alphastation 250/4-
266. CPU times of other approaches are scaled according to [161.

6.1 Standard Cell Benchmarks

We compare our results to the state-of-the-art methods Gordian/Do-
mino [14, 171 and Timberwolf [2]. As final placer for the proposed
method we used Domino [17]. The reported CPU times include
the time used for final placement. The GordiadDomino values are
taken from [2]. We take the Timberwolf values from [18, 191 which
are summarized in [2] .

Since results for circuit struct have not been published, we ran
Timberwolf 1.3.0 and GordiadDomino 9.4 in their default config-
uration to obtain the values for circuit struct.

Table 1 lists the absolute values. The columns ‘wire length’
show the wire length in meters and ‘CPU’ the CPU time in seconds.
We used the standard mode (K = 0.2) of our approach.

For better comparison, we also list the results relative to other
methods in table 2. The columns ‘improvement’ give the wire
length improvement in percent. Positive values mean that our ap-
proach is better. Columns ‘rel. CPU’ give the CPU time of our
approach divided by the (scaled) time of the compared approach.
Therefore, values smaller than 1.0 mean that our approach is faster.

One can see that our results are comparable with Timberwolf
while using one third of the runtime. A comparison under similar
runtime conditions (approximately 40 percent slower) outperforms
Timberwolf by 7.9 percent and Gordian/Domino by 6.6 percent in
wire length on the average.

We further investigated the qualityiruntime tradeoff of our ap-
proach. Our motivation is that a fast placement is useful to achieve
a placement estimation during the floorplanning phase. We com-
pared the fast (K = 1.0) and the standard (K = 0.2) mode of our

272

111 #cells #nets

147
circuit 111

rows T.-Wolf [191 T.-Wolf [181
wire CPU wire CPU wire

length length length length
rm1 [SI rm1 [SI rm1 [s3

6 -- I,

16
21
28
46
72
54
80
86

0.364

1.62
13.53
42.84

5.41
5.86

904
1920
3029
5742

13419
2 1940
22124
25384

T.-Wolf [I91
circuit % im- rel.

prove- CPU

primary 1 -
ment

struct +7.1 0.14
primary2 -
biomed -9.8 0.32
industry2 -7.9 0.39
industry3 -5.2 0.35
avq.smal1 +9.2 0.37
avq.large +8.1 0.36
average +0.2 0.32

T.-Wolf [18] Go./Do. [I71
% im- rel. % im- rel.
prove- CPU prove- CPU

ment ment
+12.1 1.68 +1.1 2.17

- +11.5 1.33
0.0 1.21 -1.1 1.65

+5.3 1.31 +8.7 1.07
-1.8 1.38 +7.5 1.33
-0.9 1.83 -0.2 1.55

+19.9 1.33 +13.5 0.99
+20.9 1.30 +13.3 0.96
+7.9 1.43 +6.6 1.38

5501

15.80
44.97

Table 1 : Benchmarks: Wire Length and CPU Time

Table 2: Comparisons to Other Approaches: Wire Length Improve-
ment and Relative CPU Times

approach. Using the fast mode, we can calculate a placement in ap-
proximately one third of the time compared to the standard mode.
The average wire length increase is 6 percent. Within 10 min-
utes, the fast approach is capable of obtaining a legal placement for
25 000 cells which could not be obtained by any other approach.

6.2 Timing

For better comparison to existing methods, we introduce a lower
bound for the length of the longest path by setting all wire lengths to
zero and performing a timing analysis. This lower bound can only
be reached if all nets of the longest path have length zero which
means that all cells would be interconnected by abutment. Then,
we calculate the longest path of a placement without timing opti-
mization and subtract the lower bound. This gives the optimization
potential of the placement. Next, we calculate the reduction of the
longest path by using timing optimization. Dividing this value by
the optimization potential tells us how much the method could ex-
ploit the optimization potential, i.e. how good it is. Measuring the
performance in the proposed way helps us to reduce the influence
of differences in net models, timing models and timing parameters.

We compare our method to [20] and [21] which has been shown
to be superior to [22]. Since having big nets in the longest path is
not realistic we disregard nets with more than 60 pins for timing
analysis in our approach. Therefore, the lower bound used for our
approach is different from the lower bound used for the other ap-
proaches in the case of ‘avq.smal1’ and ‘avq.large’. Using the same
lower bound would give unrealistic good results.

264

As in [21], we assume a capacitance per length of 242 pF/m
and a resistance per length of 25.5 wZ/m. Table 3 shows the results.
Columns ‘without timing’ list the results without timing optimiza-
tion, ‘with timing’ the results for timing optimization. All timing
values are in nanoseconds.

Table 4 demonstrates the capability of exploiting the optimiza-
tion potential. The columns ‘lower bound’ list the lower bound in
nanoseconds which we used for calculating the optimization poten-
tial. The columns ‘exploitation’ show the exploitation of the opti-
mization potential. Higher values mean better timing optimization.
Columns ‘relative CPU’ contain the CPU time requirement relative
to our approach. Values larger than one mean that the compared
method is slower.

On the average, the compared methods can exploit the opti-
mization potential by up to 42 percent whereas our method utilizes
53 percent of the optimization potential and requires less CPU time.

7 Conclusions

The upcoming placement tasks pose new challenges to placement
tools. They must be capable of placing larger netlist in less time, of
considering more geometrical and physical constraints, and of deal-
ing with more complicated timing requirements. Moreover, they
must provide a flexible interface for manual changes as well as for
changes introduced by logic synthesis tools.

To address these tasks, we proposed an iterative force directed
method. A new approach has been presented which uses additional
forces to remove cell overlaps and to adapt the placement to the
placement area. The approach has the advantage that no hard con-
straints are used during the placement procedure. This property
makes our approach much more powerful than existing methods
which make irreversible decisions at early stages that are based on
incomplete or inaccurate information. The avoidance of hard con-
straints gives the algorithm the flexibility to address a variety of
applications and objective functions. For example, our algorithm is
the first one which is able to handle large mixed blockkell place-
ment problems without treating blocks and cells differently. Con-
trary to state-of-the-art approaches, our approach can assure that
timing requirements are precisely met. While using comparable or
less CPU time, our approach outperforms Gordian and Timberwolf
by an average of 6 and 8 percent in wire length and yields signifi-
cantly better timing results.

8 Acknowledgments

The authors thank the reviewers for their valuable suggestions. The
first author thanks Kurt Antreich for his continuous support.

273

Timberwolf [20]
without with CPU

circuit timing timing
[nsl Ens1 [SI

fract 208 131 500
struct 907 449 1450
biomed
avq.small 1106 798 31993
avq.large

Speed [2 I] Our Approach
without with CPU without with CPU
timing timing timing timing

[nsl [nsl [SI [nsl [nsl [SI
- 21.2 19.8 3

108 101 32 92.5 90.1 50
126 65 218 48.6 35.7 397
827 580 3792 102 80 2791
836 605 7185 113 94 3642

References

Timberwolf [20]
lower exploi- rel.

circuit bound [ns] tation CPU
fract 18.5 40% 164

biomed
avq.small 142 31% 11

struct 84.0 55% 28

avq.large
average 42% 67

[I] N. Quinn and M. Breuer, “A force directed component place-
ment procedure for printed circuit boards,” IEEE Trans. CAS,
vol. CAS-26, pp. 377-388, June 1979.

[2] W.-J. Sun and C. Sechen, “Efficient and effective placement
for very large circuits,” IEEE Trans. CAD, vol. 14, no. 3,
pp. 349-359, 1995.

[3] A. Dunlop and B. Kernighan, “A procedure for placement of
standard-cell VLSI circuits,” IEEE Trans. CAD, vol. CAD-4,
pp, 92-98, Jan. 1985.

[4] D. J.-H. Huang and A. B. Kahng, “Partitioning based stan-
dard cell global placement with an exact objective,” in ISPD,
pp. 18-25, 1997.

[5] C.-K. Cheng and E. S. Kuh, “Module placement based on re-
sistive network optimization:’ IEEE Trans. CAD, vol. CAD-3,

[6] R.-S. Tsay, E. S. Kuh, and C.-P. Hsu, “PROUD: A fast sea-
of-gates placement algorithm,” in ACMLEEE DAC, vol. 25,
pp. 3 18-323,1988.

[7] J. M. Kleinhans, G. Sigl, E M. Johannes, and K. J. Antre-
ich, “GORDIAN: VLSI placement by quadratic programming
and slicing optimization:’ IEEE Trans. CAD, vol. CAD-1 0,
pp. 356-365, Mar. 1991.

[SI A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. E Jukl,
P. Kozak, and M. Wiesel, “Chip layout optimization using
critical path weighting,” in ACM/IEEE DAC, vol. 21, pp. 1 3 3
136,1984.

[9] M. A. B. Jackson and E. S. Kuh, “Performance-driven place-
ment of cell based IC’s,” in ACM/ZEEE DAC, vol. 26, pp. 370-
375, 1989.

pp. 218-225, July 1984.

Speed [2 I] Our Approach
lower exploi- rel. lower exploi- rel.
bound [ns] tation CPU bound [ns] tation CPU

18.5 51% 1

27.0 61% 0.55 27.0 59% 1
142 36% 1.35 69.9 68% 1
142 33% 1.97 79.9 57% 1

40% 1.13 53% 1

84.0 29% 0.64 84.0 28% 1

[IO] R. Otten, “Efficient floorplan optimization,” in IEEE ICCD,
pp. 49%501, Oct. 1983.

[I I] K. M. Hall, “An r-dimensional quadratic placement algo-
rithm,’’ Management Science, vol. 17, pp. 21+229, Nov.
1970.

[I21 R. Ellis and D. Gulick, Calculus. Harcourt Brace Jovanovich,

[131 W. E. Williams, Partial Differential Equations. Oxford Uni-
versity Press, 1980.

[I41 G. Sigl, K. Doll, and F. M. Johannes, “Analytical placement:
A linear or a quadratic objective function?,” in ACMXEEE
DAC, 1991.

1991.

[151 “www.cbl.ncsu.edu/benchmarks/layoutsynth92~’

[1 61 “performance.netlib.org/performancelhtml/PDStop.html”

[171 K. Doll, F. M. Johannes, and K. J. Antreich, “Iterative place-
ment improvement by network flow methods,” IEEE Trans.
CAD, vol. 13, pp. 1190-1200, Oct. 1994.

[181 W.-J. Sun and C. Sechen, “Efficient and effective placement
for very large circuits,” in IEEE/ACMICCAD, pp. 170-1 77,
1993.

[I91 W.-J. Sun and C. Sechen, “A loosely coupled parallel al-
gorithm for standard cell placement,” in IEEE/ACMICCAD,

[20] W. Swartz and C. Sechen, “Timing driven placement for large
standard cell circuits,” in ACM/IEEE DAC, 1995.

[21] B. M. Riess and G. G. Ettelt, “Speed: Fast and efficient timing
driven placement,” in ZEEE ISCAS, 1995.

[22] A. Srinivasan, K. Chaudhary, and E. S. Kuh, “RITUAL: A
performance driven placement algorithm,” IEEE Trans. CAS,

pp. 137-144, 1994.

VOI. CAS-39, pp. 825-840, NOV. 1992.

274

